Rapid Decay and the Metric Approximation Property

نویسندگان

  • JACEK BRODZKI
  • GRAHAM A. NIBLO
چکیده

The central point of our proof is an observation that the proof of the same property for free groups due to Haagerup [2] transfers directly to this more general situation. A discrete group Γ satisfies property (RD) (Rapid Decay) with respect to a length function l on Γ if the operator norm of any element of the group ring can be uniformly majorised by a Sobolev norm determined by l. In detail, this means the following. The left action of a group Γ on itself extends to the convolution action of the group ring CΓ on the Hilbert space l(Γ). This is the left regular representation λ of Γ which embeds the group ring in the C-algebra B(l(Γ)) of all bounded linear operators on l(Γ). The reduced C-algebra C r (Γ) is the C -subalgebra of B(l(Γ)) generated by λ(CΓ). For any positive real number s we define a Sobolev norm associated with the length function l by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on approximation conditions, standard triangularizability and a power set topology

The main result of this article is that for collections of entry-wise non-negative matrices the property of possessing a standard triangularization is stable under approximation. The methodology introduced to prove this result allows us to offer quick proofs of the corresponding results of [B. R. Yahaghi, Near triangularizability implies triangularizability, Canad. Math. Bull. 47, (2004), no. 2...

متن کامل

Optimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces

In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...

متن کامل

(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces

The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...

متن کامل

SOME COUPLED FIXED POINT RESULTS ON MODIFIED INTUITIONISTIC FUZZY METRIC SPACES AND APPLICATION TO INTEGRAL TYPE CONTRACTION

In this paper, we introduce fruitful concepts of common limit range and joint common limit range for coupled mappings on modified intuitionistic fuzzy metric spaces. An illustrations are also given to justify the notion of common limit range and joint common limit range property for coupled maps. The purpose of this paper is to prove fixed point results for coupled mappings on modified intuitio...

متن کامل

Common Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)

In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and  the common property (E.A.) in   modified  intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004